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~~~~ In this paper vs dsscribe some results oh- between these structural extremes. It is our

ta.thed ov.i t~~ past few years in the areas of feeling that results of this type not only pro-
~~~ estimation and control. The point of this research vide useful solutions to osrtian problems but

I ~~~~ is to find sobc~ssess if systems that possess suf- also shed consid.rable light on the implications
— fictsstt stru~tire to allow us to determine cptimel of structure. That is. we can begin to answer

solutions or ccmputatioealty feasibl, algorithms. questions such as which results really require
In particular , we utiliz, several results from linearity and which can we extend to systems with
group theory (both for Lie and finite groups) to somewhat less algebraic structure.

[ obtain our results .
II • Finite—Dimensional Optimal Nonlinear Filters

I Introduction The results we review in this section were
obtained in collaboration with James 1,0 and

Although in principle many control and estiza— Steven Marcus. For thorough treatm ents of those
tion problems have been solved in extremely general and related results and for further references ,
settings • the solutions are often unacceptable we refer the reader to (1—81 • Consider a dynami—
because cal system described by the following equationsi

(a) The “solution” does not actually provide x(t) — IA + ~
‘li F~ Ct)l x(t) (2 1)

t a design (as in the so-called Kushner— 10 M j  i JStratonovich solution of the nonlinear
filtering proble m) . x(0) — x0 (given)

(b) The resulting design is iuach too complex
to be evaluated for a specific system d F td t + Gdv t 2(as in solving extreme ly high-order)
Riccati equations) .

or Cc) The design i. computaticcaliy too complex proc.: s. Suchasy.teai:often
nonlinear filtering algorithms or the called a bilinear system, and systems of this type

control of large interc onnected systems) , aris, in a wide variety of applications (see
- (1—3,5—7 3) .  One very important application arises

Ofte n these difficul ties aris , because of the cx— when x(t) is a 3x3 direction cosine matrix , rep ro—
trems genera ltiy of the problem being solved. The senting the orientation of a rigid body with
approach of the research descr ibed in this paper respect to inertial space (see [6,71 for detail .) .
has been to restrict attention to subclasses of Here the Ai ar , all skew-sy .tr ic and the
systems and problems in orde r to exploit the alqe- represent components of the angu lar velocity of
braic structur e that they have in common . Our the rigid body (in this case , of course , an eqlaa—
motivation has been that there must be a middle tion of the form (2.2) holds only for spherically-

f .~ ;~ ground between • linear” and “nonlinear” or betwee n sy stric bodies~ otherwise the equations contain
“smell—scale ” and “large scale” —— i.e. that while nonlinearities , reflecting differencss in the ~~.

in both cases the former categories may be too body ’s moments of inertia ) . ~
restrictive for many appl ications, th. latter are The estimation problem we wish ~~ consider is
far too large to provide many useful results. In as follows , we observe
this pape r we describe severa l results——all using 3/agroup—theoretic concepts——for classes of systems dz(t) — E~(t)& + * dvCt) (2.3)

• Associate i rofessor of Electrical Engineering , where H )  0 and v is a standard Brownian motion
-~~~~ This work was supported by AFOSR under Grant ocess independent of v. Given a(s) • 0 5 S 5

f 72—2273. we want to dcvi.. a recursive procedur. for esti-
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~~W ~~~~~~~~~~~~~~~~~~~~(3) yet L be a Lie algebra. The Li. qrou~
~(t lt) — E(x(t))z(s), OCsCt3 (2.4) ~ sssociated with I. is the msall.est group (under— — matrix multipucatica) conta f 4 ng exp(L) VzaL.

(4) ret L be a Lie algebra. A subalgebra
Problems of this type arise in rigid body attitu de S is an ideal if •- • - -  -- - .  -

..ti.aticn prcbl.ms, when we have a strapdown -  -

system that provides measurements of angular ye- A 
- 

locity (see (63 ) or when we have an inertial p1st— tL,S3 — (tL.53 h a t , scS} C S  (2 .12)
for m (see (6,73).

In orde r to understand this problem let ~~ 
If s is a set in L, vs let (s}~ ~_ 

denot. the ideal
consider the simplest case —— N—n’.k”l . Zn this in L generated by S.
case (5) A Lie algebra L is nilpotent if the

t lower central series of ideals
r a t

0 (2.5) L0 — L

The solution then is clear : let nil a (2,13)
L — ( I L )

p(e) — f ~(s)de (2 ,6) -

terminates in (o) for some n. liote that L is
- abelian if and only if L1, — {o}.

and design a ICalman filter to compute the optime l Ws refer the read.r to (1,5,63 and in parti -’
estimate (~ (t t t ) , ~ (t~t)) of the augmsnted state cular to (9,103 for physical and mathematical
(
~ 

(t) ,p Ct) ) • Th.fl motivation fox’ the introduction of Lie-theoretic
- - 

concepts into the problem of analysis of bilinear

*~t ~~p Ct) systems. We only note the followings we asso -
x(t ft ) — e E(e £ OCs CtJ x0 (2,7) eLate two Lie algebras with the system (2.1)

and , since p is Gaussian when conditioned on 5,

we can compute ~(t Jt)  as a function of (t lt) 
~~~ — Or*1 t N }

A
its covariance 

(2 .14)

* 1 2 
LO _ ( Al~

....nN}
Z L  -

A0t + J ~p CtIt ) +~ ‘A 3,a(t~t)z(t ft ) — .  (2 ,8) Then if is the Lie group associated with

a(t lt ) — E((p( t) .4Ct~t))
2

1 (2 ,9) Atx ( t ) e e  00 x0 (2 .15)

where 0 can be precossputed.
Th~ key question is how this simple result 10r more detailed controllability results, vs

extends in the nultivaria ble case. Note that if refer the reader to (9 ,101.

all, of the A commute, we can write We have already stated that if L is .b.lian ,
i we can obtain a finite-dimensional optimal ecu-

N mator for x(t) , and in fact that estimator con-
* 

t sists of a Kabaan filter followed by an expon.n—
x(t) — exP ro

t + A~, f ~1, (S)ds~~x0 (2.10) tiat ion. Pbre generally, we obtain the resul t

and in this case one can readily extend the scalar Theorem 2.1, suppose L0 is nilpotent . Then
result (see (13 ) • Nhen the Aj don • t commute the ~ (tie) can be ~~~~~~~ via a finite set of (in
situation is far more complex, and , in fact , in ge;eral nonlinear) stochastic differential .qua-’
order to obtain results , one must determine the tions (driven by the innovations
manner in which the A~, don’t co!t~ute. This leads dv(t) — de(t) — iit(tit)) .

• to the introduction of some notions from the The basis for th is result is as follows, if
theory of Lie groups and Lie algebra s. L0 is nilpotent. then one can readily s~~ s (6,83

-

~ that every element of x(t) is a finite sue of
Definitions (1) Let L be a subepace of kxk matri— terms of the form
c.s (over C) . L i s a Iie algebra if t

c’~ (a)ds ,

SB—EAst y*,~~L (2.11) •(t) — e ~(t) (2.16)

— 

(2) Let S be a set of kxk matrices. Then where 1) (t) La a finite Volterz’a series

• there exists a smallest Lie algebra 
~~~ 

that

conta ins S. This is called the algebra generated

1 

.
• 

•

. - - - -
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• • ( k )  Zn this .acpr.s.ion , writ.

r 
~~ n(t) w0(t) + E j ... 

) ~~~~~~~~~~ t1,(a1,) — cçw~)—t 1,(c71,lt) 3 + I~W~It) (2.23)

- • - - - - • -~~ • ~~~ of the terms that results fro. this is
• 

•- (t,a1,...,a4) ç ~~~~~~ (O4)d01...40r4 - - - • - -

~ 3. “ t a
1

a
2

_______ 
— ff f CçW1)4~(a1f t ) J

where the ker nels are separ able — i.e. the v’s 
~ ~~ o - -

are of the form -

• w(t,01,....a)— EY~(t Y ~(a1)..dCa~
) (2 .18) - 

(ç(a3)4~(a2It)3t3(a,lt)da3da3da1
i—I,

:
• Theorem 2.1 then follows fron ~~~ more genera l. ¶~~~ it is easily shown that

t a ’ a2Theorem 2 .2 ((6 ,83 ) ,  The estimate •(t ft )  can be 
* i 1” r *

computed with a finite-.dimensional set of sto- t(t(t)’. J J J ,12(a1,a21t)~ 3W3lt)dor3da3da1
chastic differential equations if fl is given by • 0 0 a
(2.17) with all. separable kernels. This result
includes far more system than those described ~~ ~— -

• (2.1). We refer the reader to (6,8,113 for exam’- 
-

• 
:- plsuand more on systems with such Volt.rra series ..fi P ‘0 0 t’~ ‘0 1t)da dorepresentations. 

~ 
J0 u 1’ 2’ “3 2’ 2 1 (2.24) -

The proof of this re sult is quite lengthy
and complicated , and vs refer the reader to (6,83 where
for details. We indicate only a few of the e n -  -

tical ideas. The separability condition is cc— a
sential to have finite-dimensional realizability. 

~ (0) —Consider one of the simplest cases 3 J 3
0

- • t
A I~~~ Ct ) n ( )d (2 19) *gain, it is .asily seen that the seperab ility

W •~~~‘~•~~ 5 o f P 12 a11owu. usto augeent~~~vith a finite set -

Using a conoitional version of Pubini s theorsm~ that computes 3(t~t) 
to determin a TaIw filter

we ye 
_~ of the other terms in (2 .22) , (2. 23) is

act it ) — f w(t ,e)tCslt )da (2.20) ~ ~l ~2u(t)— ff f ~~(a1It)t~ca2 Ie) e3(a3It) da3acr2a3

At first glance, it appears that vs have to
o o : i :  ~ trajectory in order to estimata Tak ing the differential we obtain

realize (2.19) by a finite—dimensional linear sys— - C], 02tees which when combined with (2.2) leads to a 4M (t) — Z (t lt)A(t) dt +ft ffinite—dimensional Kalain fitter that can compute 1
(2.20) • The situati on for higher order Volterra
terms is more complicated but similar. (a ~t)~’ (a It)~ (a t t)Jdc, da doNow define the conditional smoothed covariance , “1 1’ “2 2’ 3 3’ 3 2 1

P~~Ca1.a2.t) — Ec(ç(a1)-~1,Ca1It ))(~~(a2)—t~(a2 It )3 • 

t a1 

(2.263 
-

~

(2.21) 3 (t) 1ff t2 (a1It)~3(a2lt) da2da1 (2.27)

A critical property of P is that it i. separable. 0 0

To see the isportance of this consider Using Ito ’s differential rule on the second term
t a a • in (2.26) , computing 43(t) in mesh the sane men—

~ ~ 2 
a a )da do ncr, and iterating these argiasnts, we Obtain a•(t )— j  j  j  ~~(C3)~~ ( 

2~~ 3~ 3 3 2 3. finite-dimensional set of nonlinear differential -

0 0 0 (2.22) mpsatiome (driven by the innovations) for the con—
-

. putation of p (see (63 ) , The general result
follows from argunents along these lines and free
rotated prop erties of conditional Gaussian
processes.

‘ 1 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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• • 1 Thus , we see that this result coobines some y (k) - tx (k) + u (k))3 med I (3 .6)

~~~~~~~~~~~~~~~~~~~~~~~~~ :~ ~~ e~ near where v is a sequence of independent
systens in order to provide one of the largest independent of w. Let fl(k) be the distribe tion
classes of finite dimensional optimal nonlinear for -v(k) (her. “~iu1us is iaterpr st.d sedulo I ) .
estimators that in some sense can be viewed as a In this case, several straightfo rward calculations
“natura1 ~ extension of the Xa3ean filter (1,63 • yield th. filtering algorithm -

1—1
~~. ~~~~ Estimation Algorithms for Certain (k+l 1k) — ~ p (k~k) (3 7)y Markov Chains • ‘ i-i -

• 
Let x (k) be a finite state Markov process with ~ (k) 1 (k)~~~ Ik 1)istate set s — {s3,...,s1

} and with probability p (kIk)~ — ~~~
‘ — (3.8)

vector p(k) (here p (k)i — Prcbtx(k)uuISi
}). The - 

~~~~~~ flCk)~.,~~,P(kIk.l)~
• 

• probability transition equation for the process is
where all indices ar. to be interpr ted mud p.

• p(k+1) — Ap (k) (3.1) Let us identify ZN with ~~~~~~~~~~~~~~~
• where A is an InN stochastic a*trix. Suppos. we where 5 is an Indeterminate and we multiply with

take a sequence (y(k)} of noisy measurements the rule — 1—r0(henc. this is a romp isomer—of the process. These measurement s are charac- t. ~~~~ f~~~~ion ?i + C isterm ed by the conditional distribution C if y is ithia 
~) • anY

discrete) or density (if y is continuous) represented in the form

- c(~,i) — P(y Oc)u’~a$x~k) ’.S ) (3.2)
- “ (3 .9)

-
• w also assues that, conditioned on x 1k) , y 1k) is • i—a

• independent of all other x(j) .
The problem of computing the conditional die- We equip the sat of all such functions with the

tnibutions p(k ~k) and p(k+l IA) for x (k) and usual definitions of pointwise addit ion and scaler
• 

• •
. z(k+l ) cdnd itioned on y (1) ,. .. ,y 1k) is concep— multiplication and with a convolution produc t

tually tr ivial , and the solut ion is given by[ Diffusion Updat e f*g — (i
~~ f~z)l~~~ 9~2~) —

p(k+t(k) — Ap (k lk) • (3.3) ~ ‘

• t• Measurement Update — 2., ;~- t—o (3.10)

p (kIk)~ — C(y(k).i)P(kIk .l)~ (3,4) where
N -

EC y k)j pck~k—n 3 — fi,gt_&

Although the derivation of (3.3) , (3.4) is a t n —  ‘h is set , denote by c(Zj is called the (complex)
• vial application of Bayes rule , the implenenta- 

E~~2_~~~~~ t of 5 . ,  .~d, with this notation• tion of these equations can be computationally
• nontrivial. For example, in general we must per— (3.7) becamse

form 12 multiplications in carrying out the 41-f- -

fusion update. The question we wish to consider p (k+lIk) — (‘p ckIk) • 
(3.12)

• • in this section is the investigation of special
classes of finite-stat. Harkov proces s for which If we also equip ctZ11 with the pointwise
the estimation procedure (3.3), (3.4) can be per—
for.sd efficiently. The resu lts we discuss in

• this section and other related topics are treat ed (3 13)
• in much more detai l in (12—151. (fc)~ f~c~

•
‘ TO motivat, the approach, suppose x(k) £ ZN —I -

~~ ~~. group of int.g ers (0,l,...,tl—i) with and the evaluation map
addition defined modulo N. Furthermore, suppose

z(k+l) — (x(k) + w (k)J mod N (3 .5) 1—1
— fi (3.14)

where w is a sequence of identically distributed,
independent, random variable s with values in

then (3.8) becomes
and with distribution ~~. We also ass~nne 

- -• - - - • - •  - 
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1(k) — fl*y(k) (3.15) Motivated by these observations, we consider

a more general probl em (for a far more general
I y(k(k) — A(k)p(kj k—l) • (3.16) case, see [14—151). To do this vs need the fol-

lowing ((3.63)
— ~~~~~ • (3.17) -

• siT ~~~~~~~ Definitions: (1) Let X be a group. - Th. (complex)

• (her. w, regard y(k) as an element of C • 
group algebr a Clx) consists of all formal sues

~~~~4”inq these equations we see that the diffus ion
update (3.12) consists of a cyclic convolution , — L’ fg•g f CC (3.25)
while the measurement update consists of a permu- 

g

tat icis (3.15) , a pointwise multiplication (3.16) ,
and a normalization (3.17) • Note that if we wrote with pointvise addition and scalar multiplication ,
(3.12) in the vector form (3.3), A would be a cix— and the convolution product
culant matrix.

• The presence of a cyclic convolut ion in these fed — f 4 .gh — •t (3 26)
squatlonssuggests the possible use of transform s. p ~ h tex
Yo r f C C ( 513 , define • 

‘

N—]. -

y~~~V’f d  ‘37
c1-

(f) •j ~ L 
~~~ 

(3.18) 
~~~ ~~q~~ta-a

• where 
• We also endow C CX] with the pointwise product andp • the evaluation map •

y — e  ‘(3 .19)

Not, the inverse transform relati on (fg)~ — ~ s(f) — f
9 

(3.28)

f — 

~
j  C~cf)~~~ (3 .20) (2) A repres entat ion T of Z is a homo~~rphise
i-0 • k+kof Ts r’C

Applying transforms to the algorithm (3.12) ,
I (3.lS)—(3.l7) yields (3) Such a representation is ca13.e~1irreducible if the only subspaces V of C x such th~~

• Ci
(p (k+llk) ) —NC~ (E )C

1-
(P (kIk)) (3.21) TCx) V C V y~~x (3.29)

—i (A) ars {0) and ck.
c1-U(k)) — y ~ c1-

(n) (3 .22) • •

(4) Two representations ‘T1 and. T2 are ~qui-
I valent if there exists an invert ible matris $ such

ci(y(k l k)) — 2.~ 
cj (X (k )) C i_j (3.23) that

• 
C ( flk lk)) - 

T1
(x) — 

~‘h!2~~
8 v*x (3.30)

C~(P(kIk)) — (3.24) Let X be a given finite group with n elements.
- 0 Then (16) one can find a complete set of inequiva—

• Evai.4ning these equat ions we note two things: 
lent. irred~cib~e representations T2-,... ,gS with

- dim~~~ — z . , T E l, and
(1) Comparing (3.12) , (3 .16) with (3.21) ,

(3.23) we see a striking duality”. $
- In the c(Z11 domain the diffusion up— — T ~ 2 (3.31)

• date is a convolution and the central
• step of th. measurement update is a

hand , L a t h  transfor m ~~~~~ 
Furthermore, one has the transform pair

situation is exactly reversed,
• (2) We can exploit this duality to re— c1-($) — 

~~ E $ LTi(~~
])J 1 (3.32)

• - duco the overal l computational
- • complexity from Ø($2) to 0(1 log N) •

with the aid of the fast Fourier
transform (FIT) • IS —4 ~• •g L C k (+) T5

k
(g) (3.33)

i_i ,—1 
- •

I 
______________ ___________
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• Consider a random process x(k) and a sequence of 4. Larce-Scale Systems with Cr~~~-Sv~~~tr~~observations y (Ii ) on X described by Interconnections

x (k+1) — w (A) x(k) - • • 
(3.34) The results described in this section ar e

• y(k) - v(k)x(k) 
- -  

-

• 
(3.35) preliminary in nature and a nor, detailed treat-

munt will be given in the forthcoming report (183 .
We also refer the reader to results in [191, (203where w and v are independent sequences of inde- that are along these lines. The basic idea ofpendant rand om variables on X. Let ~ be the dii— this work is to conside r control, and estimation• trib ution of w, and lit r~ be the distr ibution of for systems that are made up of many iutsrconnec—

v~~. In the group algebra domain we obtain the ted subsystems. The major problems that one is
• 

• following filtering algorithm interested in are either

p (k+1~k) — Fa0 (kIk) (3.36) (11 Algorithmic —— i.e. th. systems are so
• complex that the usual design and analysis

1(k) — fl*y (k) (3.37) algorithms (computer solutions of Lyapu—
nov or Riccat i equations , etc.) cannot

y(k~k) — A (k)p (k lk—l) (3.38) handle them. One ~~~ts to devise special
algorithms for analysis and synth esis that

p ( k t k )  — 
y (kIk) ~~~lize the system structure.

or (2) Implementation — i.e. often the usuals( (k IA)) system designs cannot be implemented in
real ti , and one wants to utilize sys-

If we consider the transform domain version of the tan structure to spied up implementationalgorithm we ~~~ (for example by taking advantage of

C~~~(k+l~k)) — ci(~)C
i
~~(kIk)) (3.40) hap. decen~~~lized, designs.

sparseness ) or to determine faster , per-

~ C1’(X(k))) — C~(T1) (Tt(y(k)’~ ’)] (3.41) As in the preceding sections, our approach
consists of ~~~~~~~~~ systems that possess certain

Ci (p (AlA) ) — 
C~ Cy(k A))  (3.42) structural properties that we can exploit.
mc (yCkik)) Consider the dynamical system

z(k+l) — Ax(k) + Bu Ck) + w(k) (4.1)
• and we can make the following remarks:

(1) The convolution (3. 36) of the diffusion ~ (1~ — ~ c(A) + v(k) (4.2)

up&t. is transformed into a pointwise and suppose we wa.lt to design a feedback controllermultiplication (3.40) of the transfor m that produces uC k) based on y(j ) ,  ~~~ and thatmatrices • minimizes
- (2) The transform version of the pointwise

• • 
- quite complex (see 115)). However , in — B t’I (x ’(k)Qx(k) + us (k) Ru (k)]} (4.3)

• 
~ multiplication (3.38) is in general t .

certain cases — e.g. when x is a (ki l0
metacyclic group (3.63 — it can be
interpreted as a convolution of the The solution to thi s problem is well-known and it

• transforms, yieldin g the “duality” en— consists of a P1 1pi~~ filter to estimate x(k) fol—
• countered earlie r in the ZN case. - loved by a calculation of u (k) • The design invol—

(3) Zn orde r to take advantage of pointwise yes the solut ion of 2 Riccati equations of dimen-
sion ~~di*(x). If n is large, this is an eztr .lymulti plication versus a convolution , we difficult proble m. In addition, the on-line La—• need to be able to perform the trans- plementation also requires a large nunii,er of con-

forms (3.32), (3.33) quiokly. A general putktions per stage.
• procedure for this is not Yet 

~~~~~~ Suppose, hewevor, that the overall system
• • bu t  in certain cases (such as the meta can be decoupled into smaller subsystems by changecyclic case) we can obtain generaliza— of basis on the state , input, and output spaces.

tions of ~~~ Then , we can solv, lower-dimensional proble and
things become simpler • The difficulties are the

• • We note that via Mybill—type constructions, general
finite state tla rkov proc esses can be viewed as

• evolving on semigroups (12—14] , and thus the (1) In genera l it is not easy to find such
issue of the complexity of senigroup algebra mul- basis transformat ions.
tiplication is important in understanding the ~ca- (2) In general one can’t expect to decouple

• plexity of the filtering problem. Work in this everything (including the cost .7)
area is continuing (173 .

(3) Fur en—line implementation an. would
• 

- 
have to perform the input and output
transformations in real time. In ge—

- 

nerat this is a difficult computational
‘ 4

1
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• - 

~~~~ and we need only solve the problems for
• 

Consider, however, the following situation s 
~~~~~~~~~our system is made up of N identical subsystems 2 -

numbered from 0 through N-i, and they are intercon— For this problem we have redeeM the ..lqo—S 
• nected in a aircularly-symastric fashion. That is, rithmic complexity (by obtaining lower order pro-

- - x, m,y,w, and v are composed of subvectors for blame to be solved) and the complexity of imp]..-each subsystem, and if we use a subscript to denote aentation. That is, we implement the system asthe subsystem number, we have follo~~i (1) obta in measurements v~(k)t (2) Use

rrr to comput. y(k ,t )g (3) process this data
N—i N—].

x~(k+l) — E A~x~_~(k) + E B~u~_~ (k) + wick) 
through ,— decoupled ~~A1~~~~~ I% filters and up-

j_o 
(4.4) timal gains to Obta in u(k ,L), aM (4) use the

inverse F?? to obtain u (A) .
• - The above analysis barely scratch.. the sur-

• 
S N-i face of what can be dons with s’ich systems.

— 
~~ 

c~x~_~ (A) + wiCk) (4 .5) Other issues that we have consl4srsd and are ste
dying presently are t

(1) Fast algorithms for stability tests,
(note that in this case A in (4.1) is block circu- Lyapunov and Riccati equations, pole
lent) • Suppose also that placement , etc.

Ely (k)w ’(L) )  — 6 (4.6) (2) Extensions to other types of group
• i j At symsetries (with the use of the cor—

• responding transforms as described in
liv (k)v ’(t) J - 0 ~ (4. 7) the preceding section) . Also the pos-

i ~ i—i At - sible (simpler ) use of number—theoretic
and transforms.

• (3) Decentralized control (viewed as a type
~!, N l  of “subsystem low—pass filter ”).

J ’E  L ) (x ’ (k)Q x (k)+u ’( k)R u (A) ]
k—O j  ,“3~ ~ i i  i i ~-.“i % (4) Utility of such control laws when the

- (4.8) system isn’t quite of this form .
• Let us then take the subsystem transfor ms Essults in these and rela ted areas will be roper—

i~ (18].
-ax(k,t) — L xi(k)y - Noferences

1—0
• (4 9) 1. J .T. La and A.S. Willsky, “Estimation for

-a Rotational Processes with One Degree of Free-
A(t) — /~ 

A~y dose I: Introduction and Continuous ‘rime
Processes,” IEEE Trans. Ant. Contr. , Vol.

• AC—20, No. 1, Feb. 1975,, pp . 10—21.
- • One then finds the following transformed problem

There * — complex conjugate) s 2. A.S. Willaky and J.T . La , “Estimation for
Rotational Processes with One Degree of

x(k+l ,t) — A (t)x(k,t) + B(t)u(k,t) + w(k ,t) (4. 10) Freedoms II and III ,” IEEE Trans. Ant. Contr .,
• Vol. AC—20, No. 1, Feb. 1975, pp. 22—33.

y(k ,t) .. C(t )x( h ,t) + v(k,t) (4 .11)
3. .7.T. to and A.S. Wilisky, “Stochastic Control

where of Rotational Processes with On. Degree of

• Freedom,” SIAN J. Contr., Vol. 13, No. 4,
Nov. 1975, pp. 886 .898.E(w (k ,t )w*(j ,n)I) — } (t)6~ 6~ (4.12)

t • 4. A.S. Willsky, 5.1. Marcus, and D.N. Martin,
R(v(k ,t )v *(j ,m ) )  — e(t) dk~ 8~~ (4.13) “On the Stochast ic Stability of Linear Sys-

tems Contai ning Colored Multiplicative Noise,”
IEEE Trans. Put. Contr ., Vol. ~C—20, Oct.

— ~~~ ~~~x*(k, L) ’Q(t )x(k, L) +u*(k ,t ) ’R(t )u (k ,t)} 
1975, pp. 711—713.

• 

• kiiO - 

(4•].4f 5. P .S. Willsky and S.I. Marcus , “Analysis of
Bilinear Noise Models in Circuits and

• • Thus, we hav, reduced the problem to N decoupled Devices,” 7.- Franklin Inst., Vol.. 301, Moe,
problems. These are complex—valued prcblems, but 1 and 2, Jan—Feb. 19 is, pp.103—122.
since x is real 6. S.I . Marc us, “Estimation and Analysis of Non-

linear Stochastic Systems,” Ropt . ESL-R-401,
— Pa Ct) , etc . (4 ,15) M.I.T. Electronic Systems Lab . , Camb ridge ,

Mass., .lune 1975.

L • 
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